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Abstract—The utility of wearable sensors for continuous gait
monitoring has grown substantially, enabling novel applications
on mobility assessment in healthcare. Existing approaches for
gait cycle detection rely on predefined or experimentally tuned
platform parameters and are often platform-specific, parameter-
sensitive, and unreliable in noisy environments with constrained
generalizability. To address these challenges, we introduce Cy-
clePro1, a novel framework for reliable and platform-independent
gait cycle detection. CyclePro offers unique features: (1) It
leverages physical properties of human gait to learn model
parameters; (2) captured signals are transformed into signal
magnitude and processed through a normalized cross-correlation
module to compensate for noise and search for repetitive patterns
without predefined parameters; (3) an optimal peak detection al-
gorithm is developed to accurately find strides within the motion
sensor data. To demonstrate the efficiency of CyclePro, three
experiments are conducted: a clinical study including a visually-
impaired group of patients with glaucoma and a control group
of healthy participants; a clinical study involving children with
Rett syndrome; and an experiment involving healthy participants.
The performance of CyclePro is assessed under varying platform
settings and demonstrates to maintain over 93% accuracy under
noisy signal, varying bit resolutions, and changes in sampling
frequency. This translates into a recall of 95.3% and a precision
of 93.4%, on average. Moreover, CyclePro can detect strides and
estimate cadence using data from different sensors, with accuracy
higher than 95% and it is robust to random sensor orientations
with a recall of 91.5% and a precision of 99.2%, on average.

Index Terms—Wearable computing, gait cycle detection, reli-
ability, glaucoma, Rett Syndrome.

I. INTRODUCTION

W ITH the proliferation of wearable devices, these tech-

nologies have witnessed significant attention recently

due to their potential for a large number of applications in

healthcare and wellness [1]. By providing real-time, objective

and remote monitoring, wearable sensors have been adopted
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in several application domains such as human gesture recogni-

tion, in-home patient monitoring, emergency medical services,

and other motion analysis applications [2]–[4]. Physical ac-

tivity monitoring is one of the most important interventions

in managing chronic diseases, such as cancer, diabetes, heart

disease and mental health problems and it is suggested that

utilizing wearable sensors to track human motions can improve

the quality of life in patients with these kinds of diseases [5]–

[7].

Human gait recognition and analysis is one aspect of

physical activity monitoring and is possible through track-

ing human motion. Gait analysis reflects one’s mobility and

motion patterns and properties. Gait analysis can be used to

examine the changes of health conditions in human subjects

[8], [9]. Therefore, a number of researchers have applied gait

analysis approaches in the study of motion disorders caused

by various diseases, such as Alzheimer [10], Parkinson [11],

[12], Glaucoma [13]–[15] and other visual impairments [16].

Thus, applications of gait analysis using wearable sensors in

such areas has increasingly expanded and many researchers

have focused on gait analysis, gait phases extraction, and

cycle segmentation [17], [18]. However, one of the primary

and fundamental steps of gait analysis is to detect gait cycles,

which is the focus of this article. Efficient detection of strides

can lead to extracting other important gait parameters such as

mean stride speed and cadence.

Multiple algorithms have been proposed for gait cycle

detection from wearable sensor signals [10], [18]–[30]. How-

ever, there have been different limitations associated with

some of the existing methods. One of the limitations is the

required manual observation, used to determine the alignment

of multiple axial signals according to the orientation of sensor

device, which limits automatic and real-time gait analysis. It

is needed to manually observe the physical alignments of 3D

sensor signals that is necessary to pick one specific dimension

for further analysis (i.e., vertical axis). For example, in one

study [19], only x-axis acceleration signal (corresponding to

the vertical direction in this case) is used in the analysis,

because it is more discriminant as compared to y- and z-

axis signals. Another type of manual observation aims to seek

for the most appropriate variables needed in the algorithm

and manually tune a threshold or inner parameter of the

algorithms for each experimental setting. For example, the gait

recognition method introduced in [20] requires visual detection

of the first zero point in the preprocessed vertical acceleration

signal. Also, some methods depend on the orientation of
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the wearable sensor device [18], [30]. Furthermore, many

current algorithms use empirically predefined thresholds or

experimentally tuned platform parameters [10], [21]. Although

such gait cycle detection methods have been proven to be

well-designed and practically accurate, they require fixed and

predefined thresholds or parameters of gait detection platform

tuned to best fit the certain experimental setting and require

retraining of the gait monitoring algorithms when a new sensor

platform is utilized by the end users. Also, some methods are

based on standard peak detection, in which a threshold for

signal peak is needed for cycle detection [22]. In addition,

some methods are designed to use data from a specific type

of sensor or group of sensors [18], [23], [24], [30] or data

from both legs [25]. Moreover, some past work has used cross-

correlation and dynamic time warping for gait detection, which

needs a reference segmented gait signal [26]–[28].

To achieve a reliable and generalizable gait cycle detection

approach and to overcome the aforementioned limitations,

it is necessary to develop novel techniques that can work

effectively in uncontrolled environments, which is the focus

of this article. In this way, the methodology would not de-

pend on observations, thresholds, type of sensor, or platform

characteristics, and can learn the model parameters and adjust

them with changes of sensor platform properties; such as:

bit resolution, sampling frequency, signal dynamic range and

sensor orientation.

In this article, we introduce CyclePro, a generic, computa-

tionally simple, and platform-independent framework for gait

cycle detection. The main contributions in this article can be

summarized as: (1) we introduce a reliable stride detection and

cadence estimation approach, which can be applied to signals

from different sensor types and is robust to random sensor

orientations with no dependency on manual observations re-

quired in prior studies; (2) the proposed framework leverages

physical properties of human gait to be able to learn model

parameters; (3) we develop several algorithms for template

generation, template matching, and optimal peak detection to

find repetitive patterns and strides within the motion sensor

data; (4) we demonstrate the robustness of our approach using

three datasets collected with glaucoma patients, Rett patients

and healthy participants. Moreover, our approach demonstrates

high (> 90%) accuracy under noisy signals, changes in sensor

orientation, and varying sensor type, bit resolution, signal

amplitude and sampling frequency of the signal.

A preliminary version of this manuscript was presented

in [14] focusing on considering human physical constraints

for calculating gait parameters using template generation and

cross-correlation. The current manuscript has been extensively

extended and enhanced, in order to achieve the optimal gait

parameters by refining the preliminary results calculated using

the steps in [14]. Moreover, the robustness of the new algo-

rithm is improved and tested in regards to various platform

factors and also, new datasets were used for further validations.

The developed aspects of CyclePro in comparison to [14] are

in multiple fronts: The previous work was based on template

generation and cross-correlation, while in this manuscript, in

addition to steps based on template generation and cross-

correlation, a new framework of three-step optimal stride
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Fig. 1. High level overview of sensor data processing pipeline in the CyclePro
framework.

detection that was inspired by Otsu’s algorithm was intro-

duced, and it is proved to achieve a higher precision overall

than the previously designed algorithm; more clinical data

is collected with additional participants with glaucoma for

validation of the algorithm’s performance; a new clinical

experiment is conducted using a customized foot-worn sensing

systems to collect gait data from Rett Syndrome patients to

show the robustness of algorithm to source of data; a new

experiment is conducted to collect data simultaneously from

six Shimmer nodes attached on lower limbs with different

orientations during a normal walk test, for the purpose of

evaluating the performance of our algorithm on the random

orientated device without manual observations; in addition

to the platform parameters tested in the previous study, we

modified the original clinical dataset of Glaucoma study to

simulate several signal sets with low bit resolutions in order to

test the potential of our algorithm to be utilize in the wireless

sensor system with power constraints.

II. CYCLEPRO FRAMEWORK OVERVIEW

As described above, stride detection is central to monitoring

human gait. As soon as gait strides are accurately detected, gait

parameters such as the number of strides, walking speed, and

cadence can be acquired subsequently. In this article, we focus

specifically on stride detection and cadence estimation. Figure

1 presents a high level overview of the processing pipeline for

CyclePro framework.

A. CyclePro Architecture

The input signals of CyclePro are collected from wearable

sensors mounted on both feet or embedded in shoes. These

body sites are suggested to be effective for gait monitoring

[31]–[33]. The wearable sensors include motion sensors such

as accelerometer and gyroscope, as well as electronic sensors

like force sensitive resistor (i.e. pressure sensor). The proposed

algorithms in CyclePro contains four major phases:

• Sensor Fusion: Calculating the Signal Vector Magnitude

to reduce the complexity in the raw signals.

• Template Generation: Generating templates of one gait

cycle (stride) using the Signal Vector Magnitude, by

automatically computing the required window-size for

representing a template.
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• Pattern Identification: Capturing repetitive patterns in the

signal using a normalized cross-correlation approach by

taking into account the kinematic properties of human

gait.

• Optimal Stride Detection: Detecting the strides accurately

using algorithms which automatically compute required

window sizes as well.

In the rest of this section, we first introduce several

kinematic constraints of human gait, and then discuss the

contribution of individual signal processing modules to the

robustness of the proposed framework. In the end, we describe

each of the aforementioned modules in detail, and also explain

the cadence estimation approach used in this study.

B. Kinematic Constraints

Given the fact that biometric gait behavior is one type of

physical motion, it is constrained to several physical condi-

tions. Such restrictions can be used in gait monitoring given

the correlation between kinematic measurements and spatio-

temporal signals generated during ambulation. Table I outlines

several kinematic constraints for normal cadence measured by

prior clinical research [34]–[36].

TABLE I
PHYSICAL CONSTRAINTS OF NORMAL CADENCE

Notation Definition Value

Cmean
Average number of strides per minute for a
normal walk

50

Cmax
Upper bound on the range of the normal
cadence

65

Cmin
Lower bound on the range of the normal
cadence

40

Cover
Extreme high cadence that is more likely
for running rather than normal walk

70

We utilize these statistics of normal walk cadence

(strides/minute) to automatically adjust the internal parameters

of our algorithm. As it will be discussed later in this paper,

these parameters define the lower bound on the size of anchor

window and distance filter.

C. Robustness Features

In order to explain the robustness property of CyclePro, we

highlight four methods used in our algorithm design as shown

in Table II. Applying these methods in CyclePro results in

six properties of the proposed framework, which are denoted

as the labels shown in the third column of Table II. The

explanation for each property is listed in Table III.

III. CYCLEPRO FRAMEWORK DESIGN

This section provides detailed explanation of major phases

in the CyclePro framework, as it is mentioned in the previous

section. For visualization purpose, Figure 2 shows the step-

wise results of signal processing in CyclePro using a sample

accelerometer signal.

TABLE II
METHODS APPLIED IN CYCLEPRO ALGORITHM DESIGN

No. Methods Effects (Labels)
1 Considering physical constraints A, D

2 Using Signal Vector Magnitude B, F

3 Applying normalized cross-correlation A, C, E, F

4 Performing optimal peak detection A

TABLE III
MAJOR PROPERTIES OF CYCLEPRO FRAMEWORK ATTRIBUTED TO

METHODS IN TABLE II

Label Properties
A Free of predefined thresholds

B Robust to random sensor orientation

C Robust to the changes of bit resolution

D Robust to the changes of sampling frequency

E Robust to signal amplitude

F Reliable for the noisy signal readings

A. Sensor Fusion

As mentioned previously, the first step of the algorithm

is to calculate Signal Vector Magnitude according to the

sensor signals collected from three-dimentional accelerometer

or three-dimentional gyroscope. The computation of Signal

Vector Magnitude is defined by equation (1). For signals

collected from pressure sensor, the same equation can be

applied with x = y = z.

SignalV ectorMagnitude =
√

x2 + y2 + z2 (1)

As mentioned previously, there are several advantages of

using the Signal Vector Magnitude instead of the original

sensor signals. For instance, the Signal Vector Magnitude

reflects the overall intensity of user’s movement as a sequence

of positive values, and hence, it highlights the cyclic patterns

while neutralizing the noise in uni-axial signals. In addition, it

is not necessary to distinguish each individual axial signal even

if the sensor orientation changes. As a result, the algorithm

does not need manual annotation for the physical alignments

of three axial signals, and the reduction of the input dimension-

ality also helps the system scalability and real-time processing

applications. Figure 2 shows the Signal Vector Magnitude of

a randomly selected experimental signals recorded using an

accelerometer sensor.

B. Template Generation

In this step, the templates of repetitive pattern with respect

to one gait cycle are generated in Signal Vector Magnitude

signal. A template is a signal segment determined by two

consecutive minimum salient points, and each template ac-

counts for approximately one gait cycle. Salient points are data

samples with local minimum amplitude, and the procedure

of selecting these points is described in our previous study

[14]. For this purpose, we use salience point vector. In this

vector, there is one value for each data sample in the signal
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Fig. 2. Evolution of the sample input accelerometer signal in each step of CyclePro framework, showing the final detected strides in Final Results (red circles
showing detected peaks and blue asterisk representing the inserted minimum valley point).

sequence, which denotes the number of following consecutive

data samples with larger amplitude than that of the current

data sample. Salience point vector is used to detect salient

points, which are data samples with local minimum amplitude

and have been separated by gait events covering one step.
After generating templates using obtained salient points,

we compare the standard deviation of each template with the

entire signal sequence, and select the top three templates which

have the smallest difference in standard deviation. Figure 2

shows one of the three automatically selected templates from

the given Signal Vector Magnitude signal.

C. Pattern Identification
In this step, the cross-correlation function is adopted, which

takes each selected template as the input, and continuously

estimates the similarity between each template and the entire

Signal Vector Magnitude signal sequence. CyclePro employs

normalized cross-correlation to bound the maximum value to

1. Therefore, the output is not sensitive to the changes of

amplitude range in original signal. Moreover, this approach

enhances the overall reliability of algorithm, as mentioned

in Table II and III. Equation (2) describes normalized cross-

correlation function used in this phase, whereN and T denotes

the number of data samples in the signal sequence and the

template respectively, while As(j) and At(j) denotes the

amplitude of the jth data sample in the signal and in the

template, respectively.

C(i) =

∑T
j=1 At(j)As(j + i)
∑T

j=1(At(j))2
, i ∈ [0, N − T ] (2)

The output obtained from this step is shown in the box

named “Cross-Correlation” in Fig. 2 using a sample signal.

D. Optimal Stride Detection
The output sequence of normalized cross-correlation is then

used as the input for optimal stride detection module. First

off, this module recursively finds local maximum data points

that have higher amplitude than the neighboring points in the

sequence. The selected data points are then passed through

three steps for the final stride detection. For clarification, the

terms and notations listed in Table IV are used throughout the

rest of this section.

TABLE IV
NOTATIONS USED IN STRIDE DETECTION ALGORITHMS

Terms Definition
Li The ith sample point in a list L

Li,j
A sequence of sample points from the ith to the jth in
list L

|Li,Lj| The distance of Li and Lj, measured by the number of
sample points between them in the signal

As The start point of current anchor window

Ap
The point with largest amplitude within current anchor
window

Nstep
Number of signal samples used to depict one step in
the normal cadence, estimated by (60× f/Cmean × 2)

f Sampling frequency of acceleration signal

a(x) The amplitude of sample point x

μ The mean value of a given list

σi,j
2 The variance of the value from the ith to the jth sample

points in a given list

The three steps in this module includes anchor window,
distance filter, and optimal separator. We elaborate each of

these steps as follows.

1) Anchor Window: In the first step, an anchor window

is defined as a dynamic window that iteratively moves in

the list of extracted local maximum data points, from the

first data point to the last one. In each iteration, the anchor

window algorithm projects a window with certain size from

the starting data point, and seeks for the data point in the

sequence with the highest cross-correlation result within this

window. It then removes other local maximum points obtained
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previously which lies inside the current window, and projects

another anchor window from the next local maximum data

point. Algorithm 1 presents the pseudocode for this step.

Algorithm 1 Anchor Window Algorithm

Input: list L of local maximum samples in the cross-

correlation output

As ← L1

for j is 2 → |L| do
Ap ← As

while |As, Lj |< N step do
Ap ← the sample point with larger amplitude between

current Ap and Lj

j ← j + 1
end while
Add Ap into P out

As ← Lj

end for
Output: P out the list containing the peak sample point of

each anchor window

The size of the anchor window is determined by the

parameter N step according to the average value of normal

walk cadence listed in Table I. Considering the fact that one

stride usually contains two steps, the number of data samples

required to capture one stride needs to be twice of the number

used for one step. Therefore, we use the latter number to

restrict the interval of each possible stride under search. The

box named “Anchor Window” in Fig. 2 shows the result of

this step, where the points marked with red circle indicate the

selected local maximum points.

2) Distance Filter: This step is developed to further exam-

ine those local maximum points obtained from the previous

step. We use equation (3) for the filtering purpose, which

indicates the number of data samples used to capture one stride

in the movement that is more likely to be running than normal

walk.

N stride =
60× f

Cover

(3)

Since N stride is used to represent running, it can refer to

a lower bound of the temporal distance between every two

consecutive strides of a normal walk. Distance filter works

in this way that, for each pair of consecutive local maximum

points in P out, if the number of data points in the sequence

between them is less than N stride, only the one with higher

value in this pair is selected for the later procedure, whereas

another one is filtered out. The result of this step is shown in

the box named “Distance Filter” in Fig. 2.

3) Optimal Peak Separator: This step aims to automatically

determine the final peaks (local maximum) based on the

similarity determined by the cross-correlation results. To avoid

any fixed threshold, we design an optimal separator algorithm

inspired by Otsu’s method, which is commonly used in image

processing for the purpose of image segmentation [37]. This

method exhaustively derives an optimal threshold to minimize

the sum of inner variance over all the image segments and

thus, to separate them. It can also be used over the results of

filtered local maximum points, to separate valid and invalid

peaks for final output.

However, since human movement pattern changes incon-

spicuously within a short time interval, there can be slight

fluctuations in the amplitude of adjacent data samples, which

would affect the results of cross-correlation. Therefore, by only

considering the inner variance to separate the points, we may

reject a valid peak associated with a real stride due to its

slightly lower cross-correlation result than the others. In order

to address this issue and reduce the false negative rate, we

insert a point named “minimum valley” into the filtered local

maximum points as the baseline, to balance the comparison

of the inner variance. Minimum valley is the data point with

the smallest value among all the valleys in the sequence, and

it is denoted as variable v. The pseudocode for optimal peak

separator is presented in Algorithm 2.

Algorithm 2 Optimal Peak Separator Algorithm

Input: list P of peak sample points returned by distance

filter, minimum valley point v
P ← sort P according to sample values in descending order

Add v into P
n ← the number of sample points in P

var ← σ1,n
2 =

∑n
i=1

(a(P i)−μ)2

n−1
k ← 1, b ← n
for k is 1 → n do

if σ1,k
2 + σk+1,n

2 < var then
var ← σ1,k

2 + σk+1,n
2

b ← k
end if

end for
P final ← P 1,b

Output: P final the list of selected final peaks

To use this algorithm, the resulting local maximum points

from distance filter is first sorted according to the cross-

correlation results, and then, an exhaustive search for an

optimal separation is applied with the goal of minimizing the

sum of inner variance within the two separated data point

partitions.

As shown in the box named “Optimal Separator” in Fig.

2, the input for optimal peak separator step includes the

points marked with circles (red and blue), which represent the

peaks remained after distance filter step. The point marked

with asterisk represents the inserted minimum valley point.

When the sum of inner variances within the two partitions

reaches its minimum value, the blue circle-marked point and

the minimum valley point are separated from the rest of data

samples as a new group; therefore, the output is a collection

of data samples marked with red circles. The final output of

stride detection is shown in the box named “Final Result” in

Fig. 2, and each peak is associated with one stride recorded

in the Signal Vector Magnitude signal.

E. Cadence Estimation

After stride detection phase, we further estimate cadence

based on the intervals representing the gait cycles. The cadence
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estimation phase follows the equation (4), where N intvl denotes

the number of data samples within two consecutive valid

peaks.

Cadence =
60× f

N intvl

(4)

This equation calculates the cadence for every two consec-

utive valid peaks, and then the average value is computed as

the cadence for the input signal. Furthermore, as mentioned

at the beginning of this section, three different templates are

generated and used by the algorithm, which results in three

sets of results in the end. Therefore, the final set of results

presented by CyclePro is the average of the results achieved

by each template.

IV. EXPERIMENTS

For validation purpose, we conducted two clinical experi-

ments in collaboration with medical institutes [15] and one

in-lab experiment for data collection. The experiments were

approved by the Institutional Review Board (IRB) of each

participating institution under these reference numbers: glau-

coma trials under IRB#13-000804 and Rett syndrome trials

under IRB#201801242. Each experiment was done in multiple

trials and the final results were presented as the average over

different trials. In addition, to measure the performance of

CyclePro with changes in the sensor platform, we modified

one dataset to simulate a variety of sensor parameter settings.

In order to evaluate the performance of CyclePro in each

experiment, we used recall and precision based on the number

of strides recorded in the sensor signal that were recognized

correctly, and they are defined in equations (5), (6).

Precision =
TP

TP + FN
(5)

Recall =
TP

TP + FP
(6)

where TP is the number of real strides recognized correctly,

FN is the number of real strides that were not recognized, and

FP is the number of strides that were not real but recognized

incorrectly by CyclePro. Therefore, the corresponding error is

related to presence/absence of any real strides in the detected

strides.

The rest of this section introduces the experiments and

dataset acquisition.

A. Glaucoma Trials

The first dataset was collected in a clinical study from

8 healthy participants and 8 patients with glaucoma eye-

condition. Glaucoma is the second leading cause of blindness

in adults, and it appears in different types [38]–[40]. Since

glaucoma affects patient’s vision in various levels, patient’s

quality of life can be harmed significantly. For example, it is

known that glaucoma patients walk slower and have an in-

creased risk of falling compared to typical sighted individuals

[41]. Therefore, their gait behavior could be affected and this

is the reason for considering this dataset in this manuscript.

We conducted a randomized clinical experiment involving

8 glaucoma patients (age 63.7±8.57, height 168.73±7.13 cm)

and 8 age-matched healthy control (age 60.7±4.99, height

161.96±8.43 cm) [15]. All participants were asked to perform

a 10-Meter-Walk test, which is a simple, effective and widely

used tool to evaluate gait patterns [42], while two Shimmer

(Sensing Health with Intelligence, Modularity, Mobility and

Experimental Reusability) [43] sensor nodes were mounted

on the top of their shoes. Signals were continuously gathered

from tri-axial accelerometer (MMA7260Q) integrated in each

Shimmer device. We used a sampling frequency of 102.4Hz,

and the sensitivity range was set to ±2g. Figure 3 shows the

experimental setup for this test as well as a shimmer sensor.

Fig. 3. Clinical setting used for data recording in glaucoma trial, consisting
two shimmer sensors mounted on each shoe.

The recorded datasets were manually annotated by syn-

chronizing with video recordings to create ground truth data

for validation of experiments’ results. We used the original

signals to measure baseline accuracy of our gait monitoring

framework. Furthermore, to test the robustness of CyclePro

on the changes of sensor platform variables as well as noisy

signals, we modified the original signals to acquire several

datasets. We changed sampling the dataset by up-sampling and

down-sampling of original signals. Furthermore, we changed

its amplitude and bit resolution and added different levels

of noise to the original signal. The list of various tested

parameters is presented in Table V, where the asterisk denotes

the parameter value in the original dataset.

TABLE V
NEW DATASETS SIMULATION FOR ROBUSTNESS VALIDATION (ORIGINAL

VALUES ARE MARKED WITH ASTERISKS.)

Parameter Parameter values for different datasets
Bit Resolution 16-bit*, 12-bit, 10-bit, 8-bit

Sampling Frequency 204.8Hz, 102.4Hz*, 51.2Hz, 34.1Hz, 17Hz

Signal Amplitude 0.5X, 1X*, 2X, 3X

Signal-to-Noise Ratio 20dB, 15dB, 10dB, 5dB

It should be noted that bit resolution refers to the bit number

of Analog to Digital Converter (ADC) in the microcontroller

of a sensor for representing output. Sensor nodes normally

have a severely limited energy budget [44]. Therefore, we

modified original acceleration signals by truncating the binary

raw signals in order to simulate the digital readout with lower

bit resolutions.
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Fig. 4. Clinical setting of the shoe-integrated platform used for data recording
in Rett trial, consisting accelerometer, gyroscope and pressure sensors in each
shoe.

B. Rett Syndrome Trials

The second dataset of human gait is collected in another

clinical study for patients with Rett Syndrome, in order to test

the algorithm on a patient with a different health situation, and

when data is recorded in a new experimental setting using a

different sensor platfrom. Rett Syndrome is a rare neurological

disorder that affects almost every aspect of one’s daily life,

such as breathing, eating, learning and walking with a wide

range of disabilities from mild to severe [45]–[48]. Patients

suffering from Rett Syndrome are known to have difficulties

in walking.

This dataset was recorded in an experimental setting using

an integrated sensors device and the gait data are gathered

using three different sensor types: accelerometer, gyroscope

and pressure sensors. The device was mounted on a pair of

shoes and was tested by a 14 years old female patient, who had

mild symptoms and thus, she was able to walk independently.

We developed the hardware, software, and algorithms for

collecting and analyzing gait data using a shoe-integrated

platform, as shown in Fig. 4.

As shown in Fig. 4, five pressure sensors are implemented

in the designed platform to gather related data of patients

for different analysis and the data from sensor number one

were used in this article. The inertial sensors platform allows

for real-time collection of kinematic data during clinical

experiments. Signals generated from sensing units are first

sampled by the micro-controller while the sampling frequency

was set to 26Hz for this experiment. Then, the collected data

samples are transmitted to a computer from each of the shoes

separately. In addition, a Windows-based user interface was

developed for real-time data collection and visualization. For

clinical usage, our user interface also provides video record-

ing function in order to simultaneously capture participant’s

movement during the experiment. The video recordings were

automatically synchronized with the wearable sensor signal

readings, which was used to annotate the data for validation

of results. In this way, we could obtain ground truth data such

as the time when a gait cycle is initiated, when the person is

walking and when the experiment ended.

In this dataset, the 10-Meter-Walk test was used to record

signals from sensors. Again, for further analysis we change

the sampling frequency and noise level for accelerometer data

of this dataset. In addition to original frequency of 26Hz, we

tested 13Hz and 52Hz frequencies. Also, we added noise with

SNR levels described in Table V to the original signal to test

CyclePro’s performance.

C. Sensor Orientation Test

The third dataset includes gait data recorded by an ac-

celerometer from 4 normal participants and it is generated

during a normal walk test. This dataset is used to evaluate the

performance of CyclePro on random sensor orientations, since

motion sensor readings vary on different directions.

To evaluate the impact of sensor orientations in addition

to previous parameter settings, we conducted an independent

normal walk experiment with healthy participants. For this test,

each participant was asked to walk in a well-lit hallway for

20 meters at their normal speed, while three Shimmer sensors

were attached on each of the lower shanks with different

orientations. Four healthy participants (age 25.3±2.38, height

176.5±2.87 cm) were involved in this test and the accelerom-

eter used in this test had the same platform settings as the

one used in the first test. Acceleration signals were collected

simultaneously from six Shimmer sensor nodes attached on

bilateral lower shanks, while, three Shimmer devices were

attached on each limb, and they were aligned with vertical,

horizontal and oblique directions respectively. The datasets

were manually annotated to create ground truth data for

validation of results.

V. RESULTS

A. Baseline Performance

For the first dataset, a total number of 811 strides were

recorded from two accelerometers for 16 participants during

the 10-Meter-Walk test. We first used the original dataset of

glaucoma trial to evaluate the basic performance of CyclePro

for stride detection. For evaluation purpose, the recall and

precision, defined in equations (5)-(6), are calculated based

on the number of strides recorded in the sensor signal that

were recognized correctly, while the true real strides were

determined by manual annotations done over the dataset from

sensors.

The recall and precision over the entire dataset were 96.55%

and 99.11% respectively, and our algorithm can achieve a

recall above 90% and a precision above 95% for individual

participants, as it is shown in Fig. 5 as a radar chart.

In this figure, subj1 to subj13 stand for each of individual

participants and the value for recall and precision for each par-

ticipants is demonstrated using circles with various radiuses.

We then evaluated the baseline performance of cadence

estimation for each participant individually by comparing the

results against manual annotations, as it is shown in Fig. 6.

The accuracy is defined as the precision of the estimated result

with respect to the annotated value. Figure 6 shows the average

accuracy as well as the variations for each participant over

different trials. The results demonstrate that CyclePro achieves

an average accuracy above 97% in cadence estimation for both

healthy and visually-impaired participants.
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Fig. 6. Baseline results of cadence estimation using glaucoma dataset.
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Fig. 5. Recall and precision values for stride detection using CyclePro, when
applied over glaucoma dataset, (subj1 to subj13 stand for each of individual
participants).

B. Performance Using Different Types of Sensors

To evaluate the performance of CyclePro on the data gener-

ated by a new platform consisting of different types of sensors,

we used the second dataset collected from patients with Rett

Syndrome. This dataset was gathered during a 10-Meter-Walk

test including three trials. Figure 7 shows an example of signal

sequence generated by accelerometer, gyroscope and pressure

sensor in one trial, as well as a sample output of CyclePro

using one template of the signal sequence.

It can be observed that all the three signal sequences have

a periodic nature, which corresponds to the repetitive gait

cycles. Similar to our previous experiment, we first measured

the baseline performance of CyclePro for stride detection by

estimating the precision and recall on the data gathered by

different sensors separately. The results are presented in Fig.

8 for both feet.

The results indicate that for all three sensors data, CyclePro

keeps its high performance with the recall over 95% and

the precision over 90%. Next, the baseline performance of

CyclePro for cadence estimation according to different sensors

was also evaluated, and the results are presented in Table VI.

According to this table, the performance of CyclePro for

Fig. 7. An example of signal sequence collected in one Rett trial shown
in sub-figures (a) to (c) and the corresponding output of CyclePro shown in
sub-figure (d). Circles show detected local maximum points and crosses are
for local minimum points

Fig. 8. Results of stride detection per sensor type using Rett dataset, for left
and right feet shown in left and right plots respectively.

cadence estimation remains over 90% while using different

types of sensors.

C. Robustness to Platform Parameter Changes

In the following three subsections, the robustness of Cy-

clePro to the changes in sensor parameters is assessed. We

evaluated the performance for stride detection and cadence

estimation on each of the simulated datasets mentioned in
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TABLE VI
RESULTS OF CADENCE ESTIMATION PER SENSOR TYPE USING RETT

DATASET

Sensor
Accuracy

Left foot Right foot Max Min
Accelerometer 97.11% 97.51% 99.72% 92.98%

Gyroscope 96.86% 97.97% 99.99% 93.75%

Pressure Sensor 96.71% 98.4% 99.92% 90.48%

Table V, and Fig. 9 shows the corresponding results in terms

of recall and precision.

Fig. 9. Results of stride detection on datasets with parameter changes
simulated using glaucoma dataset.

In addition, the accuracy for cadence estimation on the

simulated datasets with the minimum and maximum parameter

values, are reported in Table VII and explained in the following

subsections.

TABLE VII
RESULTS OF CADENCE ESTIMATION ON DATASETS WITH PARAMETER

CHANGES SIMULATED USING GLAUCOMA DATASET

Bit Resolution Sampling Rate SNR
16 bit 8 bit 102.4Hz 17Hz 20dB 5dB

Accuracy(%) 99.22 96.73 99.22 98.18 99.18 99.01

1) Bit Resolution Changes: A low bit resolution of wireless

sensor output can reduce the power consumption, and hence,

enhance the functional period of body sensor networks (BSN)

[49]. Furthermore, bit resolution is a platform parameter as

well as an algorithm specific parameter. Thus, we evaluate

the robustness of CyclePro with changes in bit resolution

of the signal. The leftmost plot in Fig. 9 shows the result

of stride detection on the changes of bit resolution, which

were simulated using the first dataset collected from glaucoma

patients and control group. Comparing to the performance on

the original dataset (16-bit), CyclePro maintains a precision

above 93% and a recall above 96% and with lower bit

resolutions, the drop in the accuracy is less than 6%.

By considering bit resolution changes shown in Table VII,

the results demonstrate that when the number of bits used to

represent raw signal are reduced to 8, CyclePro still achieves

an average accuracy of 96.73% for cadence estimation. More-

over, the variance in the accuracy of cadence estimation on the

four simulated datasets with different bit resolutions is 1.49.
2) Sampling Frequency Changes: We also tested CyclePro

using several datasets obtained by upsampling/downsampling

the original sensor siginals (102.4Hz) in the first dataset col-

lected during glaucoma trials. The middle plot in Fig. 9 shows

the stride detection performance on the changes; CyclePro has

a performance of 95.19% recall and 99.10% precision even

though the sampling frequency reduced to 17Hz. The drop in

the accuracy comparing with baseline performance is less than

2% for all the datasets.

The results listed in Table VII indicate that, CyclePro main-

tains an average accuracy of 98.18% for cadence estimation in

the condition of low sampling frequency. The variance of the

performance is 0.2 over all the datasets with different sampling

frequencies.

In addition, we changed the sampling frequency of ac-

celerometer data in the second dataset collected from Rett

Syndrome patient, from 26Hz to 13Hz and 52Hz, separately.

The results show that, CyclePro achieves an average recall

of 92.3% and precision of 100% for stride detection, and

an average accuracy of 98.24 for cadence estimation, which

further demonstrates the robustness of CyclePro.

3) Performance with Noisy Signal: Many gait monitoring

applications nowadays are not meant to be used inside labora-

tory, neither do they build upon sensor platforms with precise

settings. As a result, extra noise may be introduced in the

sensor readouts under uncontrolled environments.

To test the reliability of CyclePro in such situations, we

added different degrees of white noise into the original signals

in the first dataset collected in glaucoma trials. We then

performed CyclePro on each of the obtained datasets, and

the rightmost plot in Fig. 9 shows the performance on these

modified datasets with Signal-to-Noise Ratio (SNR) of 20dB,

15dB, 10dB and 5dB. CyclePro can maintain a recall above

95% and a precision above 98% for all these noisy signal sets.

The drop in the accuracy comparing with the baseline is less

than 2%.

The last two columns in Table VII show the results of

cadence estimation in the noisy signals. CyclePro can achieve

an accuracy above 99% and higher on noisy datasets, and the

variance among all created datasets, with different SNR shown

in VII, is 0.01.

We further added the same set of noises to the second

dataset collected from Rett Syndrome patient. The results

indicate that CyclePro could achieve an average recall of

92.57% and precision of 98.07% for stride detection, and an

average accuracy of 98.62% for cadence estimation.

D. Robustness to Signal Amplitude Changes

Due to the fact that the stride detection of CyclePro is

applied on the output of normalized cross-correlation function,

the result is not sensitive to the changes of signal amplitude

range by default. As a result, the validation of both stride

detection and cadence estimation using the datasets with

different signal amplitudes turned out to be exactly same

results with the baseline.

E. Robustness to Sensor Orientation Changes

As mentioned previously, the third experiment for data

collection was conducted on four participants in a normal walk
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Fig. 10. Results of stride detection on datasets with different sensor orien-
tations (L:left ankle, R: right ankle, V: vertical, H: horizontal, O: Oblique),
”Performance per ankle/orientation” is shown in left plot and ”Accuracy per
participant” is shown in right plot.

test, and three Shimmer sensors were attached on each of their

lower shank during the experiment. Each sensor was placed

in a different direction: horizontal, vertical, or oblique, and a

total number of 566 strides were recorded in the acceleration

signals according to manual annotation. Figure 10 shows the

results of stride detection in terms of recall and precision for

each sensor, and for each participant, separately.

In the left plot in Fig. 10, the x-axis refers to each sensor

denoted as its location and orientation. Sensors attached on

the left ankle are denoted as Left-V, Left-H and Left-O, and

sensors attached on the right ankle are labeled as Right-V,

Right-H and Right-O, respectively. Based on the results in

Fig. 10, CyclePro delivers a precision above 99.2% and a

recall above 91.5% in average for the six sensors with different

locations and orientations.

The right plot in Fig. 10 shows the accuracy of stride

detection according to different sensor orientations for each

subject. CyclePro maintains an accuracy higher than 89.5%

regardless of the differences in the sensor signals caused by

the orientation changes. The overall recall and precision of

orientation-insensitive stride detection is 93.23% and 99.68%,

respectively.

TABLE VIII
ACCURACIES OF CADENCE ESTIMATION ON DATASETS WITH DIFFERENT

SENSOR ORIENTATIONS

Subject L-V L-H L-O R-V R-H R-O
Sub 1 95.40% 95.76% 95.77% 95.18% 98.27% 96.55%

Sub 2 93.30% 92.62% 94.67% 92.81% 94.29% 93.94%

Sub 3 93.03% 96.33% 94.69% 93.31% 93.92% 93.31%

Sub 4 94.66% 94.90% 94.34% 90.65% 94.07% 93.79%

Average 94.10% 94.90% 94.87% 92.99% 95.14% 94.40%

CyclePro was also tested for cadence estimation on the

datasets with different sensor orientations, and the results

were compared to manual annotations. Table VIII presents

the accuracy of cadence estimation using CyclePro on each

individual dataset generated by one sensor for one subject.

It shows that CyclePro can maintain an accuracy higher than

92% in cadence estimation for various sensor orientations. The

overall accuracy of orientation-insensitive cadence estimation

is 94.4%.

VI. CONCLUSION AND FUTURE WORK

In this paper, we aimed to provide an accurate and com-

prehensive biometric gait examination through a reliable and

platform-independent data analysis approach. To this end, we

introduced a robust gait cycle detection framework, named

CyclePro, for stride detection and cadence estimation. Our

algorithm takes human kinematic constraints into account to

automatically adjust the framework parameters. These human

population gait norms are used in our method to eliminate the

need to tune platform parameters with any new changes. As a

result, our approach detects gait cycles with no dependency on

predefined platform thresholds or experiment-specific settings.

For validation purpose, we first demonstrated the perfor-

mance and robustness of CyclePro on gait data collected in

two clinical trials. Our goal was to assess the reliability of

CyclePro on changes in bit resolution, sampling frequency,

signal amplitude and noise level in signal, as well as its

performance on data generated by different sensors and we

used manual annotation of the data as the gold standard for

our performance evaluation. We could observe that CyclePro

can maintain a sufficient performance in various conditions

(higher than 93% precision and 95% recall for stride detection

and 96% for cadence estimation). We also conducted a nor-

mal walk experiment using randomly aligned sensor devices

and collected acceleration signals simultaneously. Using the

results,the reliability of CyclePro in the changes of sensor

orientation (higher than 99% precision and 91% recall for

stride detection and 92% for cadence estimation) could be

concluded.

As some of the limitations of previous works for gait cycle

detection are mentioned in Introduction section, we are able to

make a comparison between those and our proposed algorithm.

CyclePro does not need the alignment of multiple axial signals

according to the orientation of sensor device, or seeking for

the most appropriate variables such as first zero point, which is

a necessary step in some proposed algorithms [19], [20]. Also,

CyclePro uses human kinematic information to eliminates the

need for tuning sensor platform parameters and thresholds

based on experimental settings, which should be done is some

previous methods [10], [21]. In addition, it is not dependent

on set threshold for signal peak detection which is needed

in some proposed methods [22]. Furthermore, some designed

algorithms are specific to special types of sensor [23], [24]

which is not the case for CyclePro. Also, some methods

are dependent on data recorded by sensors worn on both

legs [25], and it is not a limitation for CyclePro. Moreover,

there are some methods for cycle detection that are based on

cross-correlation and dynamic time warping and they need

a reference segmented gait signal [26]–[28], while CyclePro

does not need a reference signal.

We are currently developing more generalized gait mon-

itoring algorithms that take input signals from other body

locations. In addition to reliability and generalization, we are

also working on more advanced signal processing methods,

to measure various gait specific parameters based on detected

gait cycles in the input signal.
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